
Input/Output:
Advanced Concepts

CSE 130: Introduction to
Programming in C

Stony Brook University

Related reading: Kelley/Pohl 1.9, 11.1–11.7

Output Formatting Review

❖ Recall that printf() employs a control string that may
contain conversion specifications (AKA formats)

❖ Formats are replaced by specific values when the output
is ultimately generated at run-time

❖ Formats begin with the prefix character %

❖ Formats end with a conversion character that indicates the
type of value being substituted into the output

Formatting Your Formats

❖ Between the % and the conversion character, a format may contain
(in order):

❖ Zero or more flags

❖ An optional minimum field width (a positive integer)

❖ Precede the field width with 0 to zero-pad the output

❖ An optional precision (a . followed by a nonnegative integer)

❖ An optional “h” (short) or “l” (long) modifier for integral types

❖ An optional “L” (long) modifier for float/double types

Flag Options

❖ Minus sign (“-“): the argument should be left-aligned in its field

❖ Plus sign (“+”): non-negative signed values should begin with a +

❖ Space (“ “): non-negative signed values should begin with a space

❖ Hash (“#”): prints the result in an alternate form based on the
conversion character

❖ “%#o” prepends a 0 to octal values

❖ “%#x” prepends 0X to hexadecimal values

❖ Zero (“0”): pads the field with leading zeros

int i = 123;
double x = 0.123456789;

Format Argument Actual Output Comment

%d i “123" (default) width 3

%05d i “00123" zero-padded

%7o i “ 173” right adjusted octal

%-9x i “7b “ left adjusted hex

%-#9x i “0x7b “ left adjusted alt. hex

%10.5f x “ 0.12346” width 10, precision 5

%-12.5e x “1.23457e-01” left adjusted e-format

Special Strings and scanf()

❖ A scanf() conversion specification of the form
%[...] means that a special string is to be read in

❖ If the first character inside the brackets is ^, the string
may not contain any of the other bracketed characters

❖ If the first bracketed character is NOT ^, the string may
only contain the other bracketed characters

❖ e.g., scanf(“%[AB \n\t]”, s); will read in a string
that only contains As, Bs, spaces, newlines, and tabs.

Working with Files

❖ Files provide stable storage for a program

❖ They can be used to hold data between invocations, so that it
does not need to be re-entered the next time the program
runs

❖ File processing (reading and writing data) is similar to console
I/O in C

❖ Use fprintf() and fscanf(), two variants of the I/O
functions we already know

File Pointers

❖ Start by creating a pointer to a FILE structure (defined
in stdio.h):

FILE *infile;

❖ The fopen() function opens the specified file and
returns a pointer to FILE:

infile = fopen(“my_file.txt”, “r”);

The fopen()Command

❖ fopen() takes two string arguments: the name of the file (including its
path) and the opening mode

❖ There are three opening modes:

❖ “r” opens a file to read from it

❖ “w” opens a file to (destructively) write to it

❖ If the file does not exist, “w” mode creates it

❖ “a” opens a file to append to its contents

❖ Use “r+” or “w+” to read and write to the same file

❖ If fopen() fails to open the file, it returns NULL

Reading From Files

❖ getc() reads one character at a time (like getchar())

❖ getc() takes a file pointer as its argument

❖ getc() returns EOF (end-of-file) when there are no more
characters to read

❖ fscanf() works like scanf() for more elaborate input

❖ It takes the file pointer as its first argument

❖ e.g., fscanf(infile, “%c %5d”, &letter, &code);

Writing To Files

❖ putc() writes one character to a file stream (like put())

❖ putc() takes a char and a file pointer as its arguments

❖ putc() returns EOF (end-of-file) on failure

❖ fprintf() works like printf() for more elaborate output

❖ It takes the file pointer as its first argument

❖ e.g., fprintf(outfile, “%d %s\n”, n, message);

When You’re Done...

❖ When a C program completes, all open files are closed
automatically

❖ C limits the number of files that a program can have
open at one time (usually to 20 or 64 files)

❖ If you’re working with a lot of files, you may need to
close some of them manually

❖ Do this with the fclose() function

Random File Access

❖ Files are normally read from (or written to) sequentially

❖ We can move the file position indicator as we wish,
though

❖ ftell(file_ptr) returns the current value of the file
position indicator

❖ This value is the number of bytes from the beginning of
the file, counting from 0

Moving The File Position Indicator

❖ Use fseek() to relocate the file position indicator

❖ Syntax: fseek(file_ptr, offset, place);

❖ This moves the file position indicator offset bytes from
place

❖ place can be 0 (file beginning), 1 (current location), or 2
(file end)

❖ Note that this is only guaranteed to work correctly with
binary files (so add “b” to the mode, e.g., “rb”)

Example: Printing File Contents in Reverse Order

FILE *ifp = fopen(“data.txt”, “rb”);
fseek(ifp, 0, 2); /* go to end of file */
fseek(ifp, -1, 1); /* back up 1 position */

while (ftell(ifp) > 0)
{

int c = getc(ifp); /* moves ahead 1 space */
putchar(c);
fseek(ifp, -2, 1); /* back up 2 positions */

}

fclose(ifp);

sprintf() and sscanf()

❖ These functions write to, and read from, strings (variables of type
char *) rather than the console or a file

❖ Their first argument must be of type char *

sscanf(“1 2 3 go”, “%d%d%d%s”, &a, &b, &c, tmp);

❖ Note that repeated calls to sscanf() restart at the beginning of the
source string

